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ABSTRACT

Real-time and robust automatic detection of polyps from colonoscopy
videos are essential tasks to help improve the performance of doc-
tors during this exam. The current focus of the field is on the
development of accurate but inefficient detectors that will not enable
a real-time application. We advocate that the field should instead
focus on the development of simple and efficient detectors that can
be combined with effective trackers to allow the implementation
of real-time polyp detectors. In this paper, we propose a Kalman
filtering tracker that can work together with powerful, but efficient
detectors, enabling the implementation of real-time polyp detectors.
In particular, we show that the combination of our Kalman filtering
with the detector PP-YOLO shows state-of-the-art (SOTA) detection
accuracy and real-time processing. More specifically, our approach
has SOTA results on the CVC-ClinicDB dataset, with a recall of
0.740, precision of 0.869, F1 score of 0.799, an average precision
(AP) of 0.837, and can run in real time (i.e., 30 frames per second).
We also evaluate our method on a subset of the Hyper-Kvasir anno-
tated by our clinical collaborators, resulting in SOTA results, with a
recall of 0.956, precision of 0.875, F1 score of 0.914, AP of 0.952,
and can run in real time1.

1. INTRODUCTION
Colorectal cancer is one of the most common forms of cancer [1].
The early detection and removal of colorectal polyps before they
become malignant is known to improve long-term outcomes [2].
However, the effectiveness of a clinician to detect polyps during a
colonoscopy can be affected by many factors, such as experience,
professional background, time of day, and length of the procedure,
leading to a miss rate that has been measured to be as high as 22%−
28% [3]. The performance of clinicians can be improved with the
use of a real-time system that can automatically detect polyps dur-
ing the colonoscopy exam.

The real-time detection of colorectal polyps from colonoscopy
videos is an application that has received much attention in recent
years [4–6]. Real-time object detection has not been possible with-
out considerable sacrifices in accuracy until recently with the inno-
vation of architectures such as YOLO (You Only Look Once) [7],
which shows competitive, but generally worse detection accuracy
than its more complex counterparts. The use of object trackers is a
natural way to compensate for the relatively poorer accuracy of these
more efficient detectors, but the field has not focused too much on
this topic, as evidenced by the small number of publications [8, 9].

This may be due to the lack of publicly available datasets with
fully annotated video sequences. Even with such constraint, we ad-

1Supported by Australian Research Council through grants DP180103232
and FT190100525.

Fig. 1. Polyp in video (5 frames apart)

vocate that the field must focus on the development of simple ob-
ject trackers that, when combined with efficient detectors, such as
YOLO, can produce real-time robust polyp detectors.

In this paper, we propose a simple and effective colorectal polyp
tracker based on Kalman filtering that works with relatively accu-
rate but efficient detectors. In particular, we combine our proposed
Kalman filtering with the PP-YOLO detector [10]. We show that our
method has state-of-the-art (SOTA) results on the CVC-ClinicDB
dataset [11], with a recall of 0.740, precision of 0.869, F1 score of
0.799, an average precision (AP) of 0.837, and can run at a frame rate
of 31.6 frames per second (fps). We also evaluate our method on a
subset of the Hyper-Kvasir [12] annotated by our clinical collabora-
tors, resulting in SOTA results, with a recall of 0.956, precision of
0.875, F1 score of 0.914, an AP of 0.952, and can run at 31.6 fps.

2. RELATED WORK
2.1. Object Detection
The current state-of-the-art methods for object detection all rely on
CNNs and can be classified as either two-stage or one-stage detec-
tors [13]. Two-stage detectors such as Regional Convolution Neural
Networks (R-CNN) [14] first propose regions of interest (RoIs) that
may contain an object, then each is classified separately by a CNN.
In contrast, one-step detectors such as YOLO [7], SSD (Single Shot
Detector) [15], and RetinaNet [16] predict both the bounding boxes
and the classes in the same step.

2.2. Object Tracking
Object tracking is the task of tracking unique objects through a se-
quence of video frames. Deep learning methods for this task can be
categorised as feature extraction-based or end-to-end methods [17].
Feature extraction-based methods separate the detection and track-
ing tasks [17]. Detection is done with object detection networks such
as R-CNN [14], SDD [15], or YOLO [7] and the extracted features
and/or bounding boxes are used for tracking with either classical
methods such as Kernel Correlation Filters [18] or recurrent neu-
ral networks [19]. Alternatively, end-to-end methods combine both
detection and tracking into a single step. These include Siamese
networks, patch networks, and graph-based networks [17]. Meth-
ods that use deep learning for tracking learn both spatial and tem-
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poral patterns, and are therefore currently only suited to domains
with available annotated frame sequences. Additionally, due to their
increased complexity, they tend to be slower than other methods [5].

2.3. Polyp Detection

Competitive polyp detection methods are mainly based on deep
learning methods (e.g., Faster R-CNN and SSD) [4, 20]. As there
is a trade-off between accuracy and speed, many methods with
SOTA accuracy are incapable of real-time detection [20], resulting
in limited clinical applicability. Hence, the field has focused on the
development of real-time detectors that retain some of the accuracy
of the SOTA approaches [10]

Such relatively poorer accuracy can be compensated by the use
of temporal information, such as a voting window [4] or a decision
tree [21] that works over successive frames to reduce the number
of false positives. Even though such methods are promising, they
were evaluated with older and inaccurate object detectors. SOTA
detection methods that harness temporal information have been pro-
posed [20], but require a large training set containing fully annotated
video sequences, which is challenging to acquire.

Recently proposed polyp tracking methods can be categorised
by whether they use online or offline learning. Online methods
consist of a trained object detector that provides features, bound-
ing boxes, or image patches to a tracker that learns the represen-
tation of a specific polyp at inference time. Such methods include
RYCO [22] and AIPDT [5], both of which use discriminate corre-
lation filter-based trackers that learn image patches. While AIPDT
can track polyps in real time, online methods may have difficulty
tracking polyps that rapidly change appearance due to alterations in
lighting or occluding material, as they learn a narrow representation
during inference. Alternatively, offline methods can learn temporal
patterns from large data sets. A recent example of an offline method
is the Spatial-Temporal Feature Transform (STFT) [23] that uses the
current frame and one or more previous frames as inputs. STFT pro-
duces SOTA detection accuracy, but is unable to run in real-time.

A major challenge in the field is the ability to provide a fair com-
parison between these methods because some methods have only
been evaluated on private datasets [20, 24]. To mitigate this prob-
lem, we use two public datasets [11, 12] to compare our approaches
to SOTA methods [10, 16, 23].

3. METHOD

Our training set is denoted byD = {(xi,yi)}|D|i=1 containing images
x ∈ X ⊂ RH×W×C of size H ×W with C colour channels, and
labels y ∈ Y ⊂ R4 consisting of the bounding box of the polyp
(i.e., 2-dimensional centre, and width and height). This training
set is used to train a polyp detector (e.g., PP-YOLO [10] or Reti-
naNet [16]), denoted by a θ-parameterised function fθ : X → B
that takes an image x ∈ X and produces a set of bounding boxes
B = {(yb, cb)}|B|b=1, with cb ∈ [0, 1] denoting the probability that
the model is confident in the detection. The testing set is represented
by a set of |T | colonoscopy videos containing T frames, denoted
by T = {(xi,t,yi,t)}|T |,Ti=1,t=1. An important difference of the test-
ing set, compared with the training set, is that video frames may
not have any polyp, so the annotation yi,t ∈ Y is redefined to also
contain ∅.

Our main contribution is the development of a simple and effec-
tive Kalman filtering that runs during testing to improve the accuracy
of the detector. We describe our Kalman filtering in more detail be-
low.

3.1. Kalman Filtering
Kalman filtering is a method for estimating unknown variables in a
discrete time linear dynamics system using measurements that are
assumed to have Gaussian noise [25]. We use Kalman filtering to
estimate a polyp location and size across video frames by using the
output of the detector as measurements. The state vector for frame
t ∈ {1, ..., T} is defined as:

st = [xt, yt, wt, ht,∆xt,∆yt,∆wt,∆ht]
T , (1)

where yt = [xt, yt, wt, ht] (xt, yt denote the bounding box cen-
tre, wt, ht represent the width and height of the bounding box), and
∆xt,∆yt,∆wt,∆ht are the rates of change of the bounding box
centre and size, which are estimated using the relationship described
by the state transition model F below.

Kalman filtering assumes the system transitions from time step
t − 1 to t with noise wt ∼ N (0,Q) (where N (0,Q) denotes the
Gaussian distribution of mean 0 and covariance Q) according to the
equation:

st = Fst−1 + wt, (2)
where F denotes the state transition model describing how the linear
dynamic changes through time, defined as

F =



1 0 0 0 ∆t 0 0 0
0 1 0 0 0 ∆t 0 0
0 0 1 0 0 0 ∆t 0
0 0 0 1 0 0 0 ∆t
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


.

The relation between the system state st and measurement zt with
noise vt ∼ N (0,R) is computed as:

zt = Hst + vt,

where R represents the noise covariance matrix for the measure-
ments, and H describes the measurement model, defined as:

H =
[
I4×4 04×4

]
,

with I4×4 denoting a 4 × 4 identity matrix, and 04×4 a 4 × 4 zero
matrix. The filtering process consists of two steps: a prediction step
and an update step. The prediction step estimates the a priori state
ŝ′t and error P̂′t:

kpredict(̂st−1) = ŝ′t = Fŝt−1,

P̂′t = FP̂t−1F
T + Q,

(3)

where ŝ′t is the a priori state estimate, P̂′t denotes the predicted a
priori estimate covariance, and P̂t−1 represents a posteriori esti-
mated covariance from step t − 1. The update step uses the best
matching measurement from the detector, zt = yb, as determined
by data association (5) to estimate the a posteriori state ŝt and error
P̂′t. Before this is done, the Kalman gain, Kt, is calculated and used
to scale the effect of the measurement given its estimated accuracy:

Kt = P̂′tH
T (HP̂′tH

T + R)−1,

P̂t = (I−KtH)P̂′t,

ŝt = ŝ′t + Kt(zt −Hŝ′t).

(4)

The noise covariances Q and R are difficult to estimate, so fol-
lowing [25], we assume that noise in state transition model is inde-
pendent, with Q = I8×8 × 0.01, where I8×8 is an 8 × 8 identity
matrix; and R = 04×4 (i.e., a 4× 4 zero matrix).
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3.2. Data Association
At each image of the video, there can be multiple polyp detections,
so it is important that tracked polyps are not confused with one
another. Hence, our method also relies on data association to en-
able multi-target tracking. Data association links detected bounding
boxes (from the detector) with tracked bounding boxes (from the
Kalman filter). Assuming that the detections from tth frame pro-
duces B = fθ(xt), where B = {yb, cb}|B|b=1, we first run a non-max
suppression, where we only keep the highest confidence detections
among bounding boxes that have an overlap difference score larger
than α. This score between bounding boxes yi and yj is computed
with:

s(yi,yj) =
√
|4wihi − 4wihj |+

√
(xi − xj)2 + (yi − yj)2,

(5)
where (xi, yi) denotes the bounding box centre and (wi, hi) repre-
sents the bounding box width and height (similarly for (xj , yj , wj , hj)).
The non-max suppressed detections are stored in the set B̃t. Then,
we use Kalman prediction from (3) to estimate the location of
tracked polyps from the previous frame Pt−1 = {sp, cp}

|Pt−1|
p=1 ,

as in P̃t = {{kpredict(sp), cp} : ∀{sp, cp} ∈ Pt−1} Next, we
associate the detections from B̃t with polyps in P̃t by matching
detections with overlap difference score (5) smaller than β and de-
tection confidence larger than φ. These matched detections are then
used in the Kalman update in (4) to update the list of tracked polyps
in P̃t. If a tracked polyp has not been updated within ε time steps,
it is discarded. Pt then consists of the updated polyps, as well as
unmatched detections from B̃t with confidence larger than γ.

4. EXPERIMENTAL SETUP
4.1. Datasets
We use two public datasets to test our system: Hyper-Kvasir and
CVC-ClinicDB datasets. The Hyper-Kvasir [12] dataset is a broad
gastrointestinal endoscopy dataset with examples of many different
pathological findings. It has 1000 colonoscopy images of colorectal
polyps annotated with bounding boxes, as well as 72 colonoscopy
videos that contain colorectal polyps. These videos are not labelled
frame-by-frame, so we select six to be annotated with the supervi-
sion of a gastroenterologist. The videos are selected so there is no
overlap with the 1000 annotated images. This is done by using a
MobileNet [26] model trained on the ImageNet dataset [27] and then
calculating the cosine similarity between the features of each image-
frame pair. This method is validated on known matches between
images and videos.

Two separate configurations are used for training, the first is
image-based, which uses 800 of the Hyper-Kvasir images for train-
ing, and the remaining 200 for validation. The second is video-based
and uses 4 of the Hyper-Kvasir videos for training.

Testing is done with the 2 remaining Hyper-Kvasir videos and
the CVC-ClinicDB dataset [11], which is composed of 612 anno-
tated colorectal polyp images. While CVC-ClinicDB is not strictly a
video database, it comprised of many short colonoscopy sequences,
which allows for methods like Kalman filtering and STFT [23] to
take advantage of temporal information.

4.2. Detectors and Training
We test the application of our Kalman filtering to three differ-
ent types of polyp detectors: RetinaNet [16], PP-YOLO [10] and
STFT [23]. While two versions of RetinaNet and PP-YOLO are
trained exclusively on either the image or video data sets, STFT
can only be trained with the video data set. PP-YOLO, RetinaNet

Table 1. Results on CVC-ClinicDB
Method Precision Recall F1 AP Inference Time (SD) Frame Rate

Image Trained
RetinaNet 0.836 0.897 0.865 0.942 113.03 (5.43) 8.8

RetinaNet + Kalman 0.900 0.936 0.918 0.977 114.74 (5.96) 8.7
PP-YOLO 0.869 0.873 0.871 0.904 30.58 (0.19) 32.7

PP-YOLO + Kalman 0.948 0.948 0.948 0.963 31.60 (0.53) 31.6
Video Trained

RetinaNet 0.390 0.600 0.294 0.189 113.03 (5.43) 8.8
RetinaNet + Kalman 0.390 0.600 0.473 0.453 114.74 (5.96) 8.7

STFT 0.509 0.608 0.554 0.545 529.10 (33.10) 1.89
STFT + Kalman 0.737 0.796 0.765 0.868 531.54 (34.75) 1.88

PP-YOLO 0.467 0.827 0.597 0.654 30.58(0.19) 32.7
PP-YOLO + Kalman 0.869 0.740 0.799 0.837 31.60 (0.53) 31.6

and STFT are trained for 60,000, 8,000 and 35,000 iterations re-
spectively, with a batch sizes of 52, 4 and 1, and learning rates of
0.000625, 0.0001 and 0.000125. All methods are optimised with
SGD with a momentum factor of 0.9. The 4 Hyper-Kvasir videos
in the training set are used to estimate the parameters of the data
association for Kalman filtering, where average precision (AP –
explained below in Sec. 4.3) is used to select the following param-
eter values for PP-YOLO and STFT: α = 700, β = 295, ε = 17,
φ = 0.17, and γ = 0.0575. For RetinaNet we instead use α = 700,
β = 295, ε = 1, φ = 0.8, and γ = 0.09.

4.3. Evaluation
The detection methods are quantitatively assessed with precision,
measured with P = TP

TP+FP
, and recall R = TP

TP+FN
. True posi-

tives are determined by the intersection-over-union (IoU); the area of
the intersection of the predicted bounding box and the ground truth
bounding box divided by the area of their union. For this application
an IoU ≥ 0.2 is considered to be a true positive. We also evaluate
the detectors with average precision (AP), which is the average value
of the precision as a function of the recall in the interval [0, 1]. It is
defined with Pn and Rn being the precision and recall at the nth

threshold as [28]:

AP =
∑
n

(Rn −Rn−1)Pn.

We also calculate the F1 score; the harmonic mean of the preci-
sion and recall, defined by F1 = 2 × P×R

P+R
. Additionally, the Free-

response receiver operating characteristic (FROC) curve is displayed
by plotting recall against the number of false positives per minute of
video (assuming 25 frames per second) as the classification threshold
is changed [29]. To assess the efficiency of the methods we report the
amount of time they need to process a single image and the number
of frames per second (fps) they can process.

The performance of the system is evaluated on the entire CVC-
ClinicDB dataset and the 2 annotated test videos from the Hyper-
Kvasir dataset. The computer used in this evaluation was equipped
with Intel i7-6700K, 16GB memory, and Nvidia GTX 1070 8GB.

5. RESULTS AND DISCUSSION
Table 1 shows the precision, recall, F1 and AP improvements
brought by the application of Kalman filtering to the RetinaNet,
STFT and PP-YOLO detectors on the CVC-ClinicDB dataset. It
can be seen that for almost all cases, the use of our Kalman filtering
improves precision, recall, F1 and AP for all detectors with negli-
gible computational cost. The prevision and recall improvement on

2The authors of PP-YOLO use a batch size of 24, but due to hardware lim-
itations, we were restricted to 5, which may cause the model to not converge
optimally.
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Fig. 2. Precision-recall curves of video trained methods on CVC-
ClinicDB

Fig. 3. FROC curves of video trained methods on CVC-ClinicDB

Fig. 4. Precision-recall curves of video trained methods on Hyper-
Kvasir

CVC-ClinicDB can be seen in Fig. 2 for all recall values, and the
FROC curve in Fig. 3 shows the clear advantage of using Kalman
filtering for all detectors.

Similarly, Table 2 shows the results of RetinaNet, STFT and PP-
YOLO (with and without Kalman filtering) on Hyper-Kvasir. Again,

Table 2. Results On Hyper-Kvasir Videos
Method Precision Recall F1 AP Inference Time (SD) Frame Rate

Image Trained
RetinaNet 0.839 0.907 0.872 0.919 113.03 (5.43) 8.8

RetinaNet + Kalman 0.840 0.969 0.900 0.965 114.74 (5.96) 8.7
PP-YOLO 0.870 0.950 0.908 0.936 30.58(0.19) 32.7

PP-YOLO + Kalman 0.875 0.956 0.914 0.952 31.61 (0.53) 31.6
Video Trained

RetinaNet 0.326 0.462 0.382 0.310 113.03 (5.43) 8.8
RetinaNet + Kalman 0.626 0.419 0.502 0.421 114.74 (5.96) 8.7

STFT 0.409 0.920 0.566 0.474 529.10 (33.10) 1.89
STFT + Kalman 0.685 0.918 0.785 0.787 531.54 (34.75) 1.88

PP-YOLO 0.269 0.210 0.236 0.137 30.58(0.19) 32.7
PP-YOLO + Kalman 0.608 0.236 0.340 0.196 31.60 (0.53) 31.6

Fig. 5. FROC curves of video trained methods on Hyper-Kvasir

the computational cost of Kalman filtering is negligible, where PP-
YOLO with and without Kalman filtering is the only approach with
real-time processing. The prevision and recall improvement on
Hyper-Kvasir is displayed in Fig. 4, and the FROC curve in Fig. 5
shows that Kalman filtering helps to increase the recall for all values
of false positives. Note that for all methods, the only approaches
that can produce real-time analysis is PP-YOLO with and without
Kalman filtering.

6. CONCLUSION
For detecting and tracking colorectal polyps, Kalman filtering al-
ways improves detection accuracy with negligible additional com-
putational cost. The difference in performance on CVC-ClinicDB
and Hyper-Kvasir shows the need for public datasets that better rep-
resent realistic operating conditions for colorectal polyp detection
systems. To show that these systems perform well enough to be
widely deployed, they will need to be evaluated on datasets that are
representative of their deployed environment.
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